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Abstract

Quantifying the CO2 flux sustained by low-temperature fumarolic fields in volcanic-
hydrothermal environment has remained a challenge, to date. Here, we explored the
potentiality of a commercial infrared tunable laser unit for quantifying such fumarolic
volcanic/hydrothermal CO2 fluxes. Our field tests were conducted (between April 20135

and March 2014) at Nea Kameni (Santorini, Greece), Hekla and Krýsuvík (Iceland)
and Vulcano (Aeolian Islands, Italy). At these sites, the tunable laser was used to
measure the path-integrated CO2 mixing ratios along cross-sections of the fumaroles’
atmospheric plumes. By using a tomographic post-processing routine, we then ob-
tained, for each manifestation, the contour maps of CO2 mixing ratios in the plumes10

and, from their integration, the CO2 fluxes. The so-calculated CO2 fluxes range from
low (5.7±0.9 t day−1; Krýsuvík) to moderate (524 ± 108 t day−1; “La Fossa” crater, Vul-
cano). Overall, we suggest that the cumulative CO2 contribution from weakly degassing
volcanoes in hydrothermal stage of activity may be significant at global scale.

1 Introduction15

The chemical composition of volcanic gas emissions can provide hints onto the mech-
anisms of magma ascent, degassing and eruption (Allard et al., 2005; Burton et al.,
2007; Oppenheimer et al., 2009, 2011), and can add useful information for interpreting
the dynamics of fluid circulation at dormant volcanoes (Giggenbach, 1996; Chiodini
et al., 2003, 2012).20

Carbon dioxide (CO2) is, after water vapour, the main constituent of volcanic
(Giggenbach, 1996) and hydrothermal (Chiodini et al., 2005) gases, and has attracted
the attention of volcanologists because it can contribute to tracking magma ascent prior
to eruption (Aiuppa et al., 2007, 2010). The volcanic/hydrothermal CO2 flux sustained
by diffuse soil degassing can be measured relatively easily during surveys (Chiodini25

et al., 1996, 2005; Favara et al., 2001; Hernández, 2001; Cardellini et al., 2003; Inguag-
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giato et al., 2005, 2012; Pecoraino et al., 2005; Mazot et al., 2011) or with permanent
installations (Brusca et al., 2004; Carapezza et al., 2004; Werner and Cardellini, 2006;
Inguaggiato et al., 2011). In contrast, the volcanic CO2 flux contributed by open vents
and/or fumarolic fields is more difficult to measure, since the volcanic gas CO2 signal
is diluted – upon atmospheric transport – into the overwhelming background air CO25

signal. Such volcanic CO2 flux emissions have been quantified for only ∼30 volcanic
sources, based upon simultaneous measurement of SO2 fluxes (via UV spectroscopy)
and CO2/SO2 plume ratios (via direct sampling, Fourier transform Infra Red (FTIR)
spectroscopy, or the Multi-GAS; see Burton et al., 2013). This methodology is however
not applicable to the countless number of quiescent volcanoes with low-temperature10

(SO2-free) emissions (Aiuppa et al., 2013). As a consequence, the available dataset
of volcanic CO2 fluxes is still incomplete, making estimates of the global volcanic CO2
flux poorly accurate (Burton et al., 2013).

In this paper, we discuss the use of Tunable Diode Laser Spectrometers (TDLS)
for estimating volcanic/hydrothermal CO2 fluxes from quiescent volcanoes. Tunable15

Diode Lasers are increasingly used in air monitoring (Gianfrani et al., 1997a) and,
more recently, for volcanic gas observations (Gianfrani et al., 1997b, 2000; De Natale
et al., 1998; Richter, 2002). Pedone et al. (2014), recently reported on the first direct
observation of the volcanic CO2 flux from the fumaroles of Campi Flegrei (southern
Italy), by using a portable Tunable Diode Laser (TDL) system.20

We here extend this previous work, discussing the results of TDL observations at four
additional quiescent volcanoes: Nea Kameni (Santorini, Greece), Hekla and Krýsuvík
(Iceland), and Vulcano Island (Aeolian Islands, Italy) (Fig. 1). We select these volca-
noes because they display a range of fumarolic activity from weak (Krýsuvík, Hekla) to
moderate (Vulcano Island). While there is strong argument for the global volcanic CO225

budget being dominated by a relatively small number of strong emitters (Shinohara,
2013), it remains that weakly degassing volcanoes dominate – at least in number – the
population of historically active volcanoes on Earth. It is on characterising the typical
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levels of CO2 emission from such feeble volcanic point sources that we concentrate on
in this study.

2 Background

Santorini, the site of the famous Minoan eruption ∼3600 yr ago (Druitt et al., 1999),
is an island located in the Aegean Sea, part of the Ciclades Archipelago. Santorini5

has a surface of 75.8 km2 and is presently made up of five islands (Thera, Therasia,
Aspronisi, Palea Kameni and Nea Kameni) that constitute the active intra-caldera vol-
canic field (Dominey-Howes and Minos-Minopulos, 2004). Four periods of unrest in the
20th century have culminated into small-scale eruptions in 1925–1926, 1928, 1939–
1941 and 1950 (Fyticas et al., 1990; ISMOSAV, 2009). Outside the caldera, volcanic10

activity has been recorded in 1649–1650 AD, in the Kolumbo submarine volcano (Vou-
gioukalakis et al., 1994). Since the last eruption in 1950, the volcano has remained
quiescent (Tsapanos et al., 1994; Papazakos et al., 2005; ISMOSAV, 2009). In early
2011, geodetic monitoring revealed an new stage of caldera-wide uplift (Newman et al.,
2012; Parks et al., 2012), accompanied by swarms of shallow earthquakes. This unrest15

lasted from January 2011 to April 2012 (Parks et al., 2013). Degassing activity at San-
torini is currently concentrated in a small, hydrothermally altered area on top of Nea
Kameni islet (Parks et al., 2013), where a number of weakly fuming fumaroles (mostly
CO2, water vapour and air-derived gases; temperatures of 93–97 ◦C) are concentrated
(Tassi et al., 2013). A recent survey carried by Parks et al. (2013) indicated increased20

diffuse CO2 emissions between September 2010 and January 2012; this period was
characterized by a change in the degassing pattern, with an increase in soil CO2 emis-
sions peaking at 38±6 t d−1 in January 2012 (Parks et al., 2013). Tassi et al. (2013)
examined the response of fumarole composition to the 2011–2012 unrest, and reported
increasing CO2 concentrations (and decreasing δ13C−CO2) from May 2011 to Febru-25

ary 2012, suggesting mantle CO2 contribution. The summit fumarolic field was the site
of our 9 April 2013 survey (see Figs. 1a and 2).
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Hekla is one of the most active volcanoes in Europe. Its historical volcanic activity,
petrology and geochemistry of volcanic rocks have been the subject of several studies
(e.g. Thorarinsson, 1967; Sigmarsson, 1992). Hekla (63.98◦ N, 19.70◦ W; 1490 m a.s.l.)
is located in the southern part of Iceland at the intersection of the South Iceland Frac-
ture Zone and the Eastern Volcanic Zone (Thordarsson and Larsen, 2007 and refer-5

ences cited). Five plinian eruptions have been identified in the historical record, most
recently in 1104 AD (Thorarinsson, 1967; Larsen et al., 1999). In recent decades, Hekla
has erupted frequently, at an average rate of one eruption per decade, and most re-
cently in 2000 (Höskuldsson et al., 2007). Gas information has long remained missing,
because Hekla appears to be only degassing during eruptions. Very recently, Ilyinskaya10

et al. (2014) identified a weakly degassing, warm ground on the summit of the Hekla
1980–1981 crater (Fig. 1b), and studied the composition of this gas using data from
a permanent Multi-GAS instrument and field campaigns using an accumulation cham-
ber installed by INGV-PA (Istituto Nazionale di Geofisica e Vulcanologia, Sezione di
Palermo) and IMO (Icelandic Meteorological Office) in 2012. These authors provided15

evidences for this gas spot being the only current surface manifestation at Hekla. This
degassing field was therefore the site of our measurement survey with the TDL on
2 July 2013 (see Figs. 1b and 3).

Krýsuvík (Fig. 1c) is one of five presently active geothermal areas on the Reyk-
janes Peninsula, in Iceland (Markússon and Stefansson, 2011). Geothermal activity20

at Krýsuvík includes hot grounds, steaming vents, steam-heated hot springs and mud
pots, and pervasive surface alteration. The most important surface manifestations are
confined to the Sveifluháls area, including Austurengjahver and the small areas of
Seltún and Hveradalur (Markússon et al., 2011). On 5 July 2013, we performed TDL
observations in Hveradalur (63◦53,449′ N, 22◦4,190′ W; Figs. 1c and 4). This area in-25

cluded two major fumarolic manifestations (indicated as “FumA” and “FumB” in Fig. 4).
The fumarolic vent “FumA” is monitored by a permanent Multi-GAS instrument (shown
as a triangle in Fig. 4) deployed in a joint monitoring program led by British Geological
Survey (BGS), INGV and IMO.
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Vulcano is a volcanic island belonging to the Aeolian Islands in the southern Tyrrhe-
nian Sea (Italy). Since the last eruption in 1888–1890, this closed-conduit volcanic sys-
tem has been characterized by intense fumarolic activity concentrated on the summit of
La Fossa crater (Fig. 1d), a small (391 m a.s.l.; 2 km in diameter) <5 ka old pyroclastic
cone. Degassing activity has shown signs of intensification in the last decades, includ-5

ing increased fumarole temperatures (Badalamenti et al., 1991; Chiodini et al., 1995;
Capasso et al., 1997), and episodic variations of gas/steam ratios (Chiodini et al., 1996;
Capasso et al., 1999; Paonita et al., 2002, 2013). The CO2 flux from the La Fossa fu-
marolic field has been measured previously by Aiuppa et al. (2005, 2006), McGonigle
et al. (2008), Tamburello et al. (2011) and Inguaggiato et al. (2012). On 11 March 2014,10

we measured the CO2 emissions from La Fossa using the measurement configuration
of Fig. 1d.

3 Methods

The Tunable Diode Laser Spectroscopy technique (TDLS) relies on measuring the ab-
sorbance due to the absorption of IR radiation (at specific wavelengths) by a target15

gas. Like in previous work at Campi Flegrei (Pedone et al., 2014), we used a Gas-
Finder 2.0 Tunable Diode Laser (produced by Boreal Laser Inc.), a transmitter/receiver
unit that can measure CO2 mixing ratios over linear open-paths of up to 1 km distance,
operating in the 1.3–1.7 µm wavelength range. Radiation emitted by the IR laser trans-
mitter propagates to a gold plated retro-reflector mirror, where it is reflected back to the20

receiver and focused onto a photodiode detector. Incoming light is converted into elec-
trical waveform, and processed to determine in real-time the linear CO2 column amount
(in ppm m) along the optical path, using the procedure described in Tulip (1997). CO2
column amounts are converted into average CO2 mixing ratios (in ppm) along the path
by knowledge of path lengths (measured with an IR manual telemeter, 1 m resolution).25

A portable meteorological station was continuously recording (frequency=1 Hz) dur-
ing the measurements to restrict post-processing to sampling intervals characterized
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by similar meteorological conditions. Instrumental accuracy is evaluated using a corre-
lation coefficient (R2), which is a measure of the similarity between the waveforms of
the sample and reference signals. According to manufacture’s datasheets, an accuracy
of ±2 % is achieved for R2 > 0.95 (Trottier et al., 2009).

In the field, the GasFinder was set to measure CO2 mixing ratios at 1 Hz rate (Pe-5

done et al., 2014). Alignment between the laser unit and the retro-reflector mirror was
optimised using a red visible aiming laser and a sighting scope. The size of the retro-
reflector mirror was chosen as to adjust the returning light level to a desired value,
depending on the path-length and the expected amount of absorbed radiation.

4 Results and discussions10

4.1 Field operations

The GasFinder operated for more than 10 h during the four field campaigns (more than
4 h at Nea Kameni on 9 April 2013; 1 h at Hekla on 2 July 2013; 1.5 h at Krýsuvík on
5 July 2013; and more than 2 h at Vulcano on 11 March 2014). Measuring at 1 Hz, the
GasFinder acquired more than 9000 readings of path-integrated CO2 mixing ratios.15

However, we concentrate here onto a subset of data (1070 readings for Nea Kameni;
985 readings for Hekla; 1150 readings for Krýsuvík and 1757 for Vulcano Island), ex-
tracted from the original dataset based on data quality criteria (the same described in
Pedone et al., 2014): we selected readings characterized by high accuracy (R2 val-
ues >0.95, optimal light values), and taken during phases of stable wind direction and20

speed. Northern trending winds prevailed during the field campaign at Nea Kameni
(red arrow in Fig. 2); southern trending winds at Hekla (red arrow in Fig. 3); and north-
western trending winds at both Krýsuvík (red arrows in Fig. 4) and “La Fossa” crater at
Vulcano Island (red arrow in Fig. 5).

Figure 1 shows the GasFinder operational field set-up at the four volcanoes. In each25

picture, the GasFinder unit positions are expressed by letters; while retro-reflectors
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positions are expressed by numbers (Fig. 1). During each campaign, and at each of
the degassing areas, the position of the GasFinder unit was sequentially moved (e.g.,
from positions A to F in Fig. 1a) so as to scan the plume from different viewing directions
and angles. We acquired along each single GasFinder – retro-reflector path (e.g., path
A-1 in Fig. 1a) for ∼4–5 min, before rotating the instrument’ head to measure along the5

successive path (e.g., A-2). The number of operated paths ranged from 9 (Hekla) to 36
(Nea Kameni and Vulcano), and the entire measurement grid (e.g., the total number of
possible Gas-Finder – retro-reflector paths) was covered in a few hours at most.

4.2 CO2 mixing ratios and plume transport speed

The highest CO2 mixing ratios (∼1050 ppm) were measured at Hekla (Fig. 3), while10

the lowest mixing ratios values were detected at Nea Kameni and Krýsuvík (peaking
at 590 ppm and <500 ppm respectively, see Figs. 2 and 4). Intermediate CO2 mixing
ratios (∼900 ppm) were detected at “La Fossa” crater at Vulcano Island (Fig. 5), re-
flecting gas contribution from fumarolic vents located on the rim and in the inner wall of
the crater.15

Background readings were obtained in each of the measurement sites by pointing the
laser beam toward a mirror, positioned upwind the fumarolic area (Pedone et al., 2014).
Background values of <400 ppm were observed in all the analysed areas (Figs. 2–5).

During each campaign, the vertical plume transport speed was measured by a video
camera pointing toward the fumarolic vents, and acquiring sequences of images of20

the atmospheric plume at 25 frames per second (see Aiuppa et al., 2013; Pedone
et al., 2014). The sequences of frames were later post-processed to calculate the time-
averaged plume transport speed, after converting camera pixels into distances (using
a graduated pole, positioned close to the vent). Plume transport vertical speeds are
reported in Table 1, and converge at 1–1.2 m s−1 at all volcanoes.25
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4.3 Contouring of in-plume CO2 mixing ratios

At each of the four volcanoes, we combined the available set of path-integrated mixing
ratio data to derive a two-dimensional reconstruction of CO2 distribution (in ppm) in the
plume cross-section, between the GasFinder position(s) and the retro-reflectors.

To this aim, we used a Matlab script (released by the authors, and available on5

request; see Pedone et al., 2014 for more details), to (i) create a matrix containing
information on the geometry of the experimental setup (an example is given in Fig. 2
for Nea Kameni) and (ii) use this matrix to obtaining a bi-dimensional reconstruction
of CO2 concentrations in a cross-section of the atmospheric plumes, starting from the
raw GasFinder dataset. In order to start the calculations, the Matlab script was ini-10

tialised with the coordinates of laser and retro-reflectors positions. The additional input
data was a column vector, containing the mean CO2 column amount (in ppm m) ob-
tained for the different GasFinder-retro-reflector paths. With these inputs, the script
performed a data inversion using a least-squared method, previously described by Pe-
done et al. (2014). The geometric matrix (Fig. 2a) generated by the Matlab algorithm,15

is a geometric reconstruction of the experimental set-up (the explored space was dived
into 16 equally sized cells; the red cells in Fig. 2a). The scripts used the data inversion
procedure to assign an averaged CO2 mixing ratio (in ppm) to each cell of the 4×4
matrix (the same 16 cells of Fig. 2a). Using sets of synthetic data to test the algorithm,
we estimated an error of ≤3 % associated to these individual cell mixing ratios.20

The so-called tomographic matrix (Fig. 2b) was then interpolated with the Surfer
software to obtain the contour maps of Figs. 2c and 3–5. We used the Point Kriging
geo-statistical method to interpolate the available data and produce an interpolated
grid (Isaaks and Srivastava, 1989). Figure 2c is the contour map of CO2 mixing ra-
tios obtained at Nea Kameni. This map (obtained by interpolation of the tomographic25

matrix of Fig. 2b) shows the distribution of CO2 mixing ratios in the roughly horizon-
tal atmospheric cross-section, covering the area between the Gas Finder (A–F) and
retro-reflector (1–6) positions (Fig. 1a). The figure shows that, in spite of the feeble

2653

http://www.solid-earth-discuss.net
http://www.solid-earth-discuss.net/6/2645/2014/sed-6-2645-2014-print.pdf
http://www.solid-earth-discuss.net/6/2645/2014/sed-6-2645-2014-discussion.html
http://creativecommons.org/licenses/by/3.0/


SED
6, 2645–2674, 2014

Tunable diode laser
measurements of hy-
drothermal/volcanic

CO2

M. Pedone et al.

Title Page

Abstract Introduction

Conclusions References

Tables Figures

J I

J I

Back Close

Full Screen / Esc

Printer-friendly Version

Interactive Discussion

D
iscussion

P
aper

|
D

iscussion
P

aper
|

D
iscussion

P
aper

|
D

iscussion
P

aper
|

degassing activity present, a CO2 plume is imaged by our observations on the eastern,
inner rim of the Nea Kameni crater. Low CO2 mixing ratios (∼390 ppm) are outputted
by the Matlab routine on the north-western portion of the investigated area, while higher
CO2 mixing ratios (from 490 to ∼540 ppm) are identified on the east, where the main
gas emission vents are located. The peak CO2 mixing ratio of ∼590 ppm is located in5

correspondence to one principal gas vent (marked as “Fum6” in Fig. 2c).
Similar results have been obtained at Hekla, Krýsuvík and Vulcano. Figure 3 is a con-

tour map of CO2 mixing ratios at the Hekla measurement site (Fig. 1b). Given the
positioning of Gas Finder and retro-reflectors, the Matlab-derived contour map is here
relative to an hypothetical horizontal cross-section, taken at about 1 m height above the10

warm degassing ground identified by Ilyinskaya et al. (2014) on the rim of the 1980–
1981 summit crater of Hekla (Figs. 1b and 3). In this area, the background CO2 mixing
ratio was evaluated at around 400 ppm. The peak CO2 mixing ratio (∼1050 ppm) was
detected in the central portion of the investigated area, in the same sector where the
highest soil CO2 fluxes have been observed (Ilyinskaya et al., 2014).15

The CO2 contour map obtained at Krýsuvík is shown in Fig. 4. In this area, CO2
mixing ratios ranged from 350–380 ppm at the periphery of the exhaling area, and up
to ∼500 ppm near the two main fumarolic vents (“FumA” and “FumB” in Fig. 4).

The CO2 distribution map of “La Fossa” crater at Vulcano Island is shown in Fig. 5.
The highest CO2 mixing ratios (up to 880 ppm; Fig. 5) were detected in correspondence20

of the principal fumaroles (“F0”, “F5” and “F11”) of the crater rim and the “FA” fumarolic
field in the inner wall of the crater.

4.4 Calculation of the CO2 flux

The ability of the TDL to contour CO2 mixing ratios in a volcanic gas plume cross
section (Figs. 2–5) opens the way to quantification of the fumarolic CO2 output from25

each of the studied areas.
In order to calculate the CO2 output from each fumarolic area, we integrated each

set of CO2 mixing ratio values in each CO2 contour map (Figs. 2–5), to obtain a CO2
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Integrated Column Amount (ICA) over the entire plume cross-section. This ICA was
then multiplied by the vertical plume transport speed, yielding a CO2 flux. The calcu-
lated CO2 fluxes are listed, for each site and each campaign, in Table 1. The accuracy
(1 σ) of the mean flux estimates are calculated from error propagation theory applied
to both ICA and plume transport vertical speed.5

Applying this procedure to the contour map of Fig. 2, we estimate a CO2 flux from
Nea Kameni fumaroles of 63±22 t day−1. This fumarolic output is ∼4 times higher
than the total diffuse discharge from the soils of 15.4 t day−1 reported by Chiodini
et al. (1998), and ∼1.5 times higher than the soil CO2 output of 38±6 t day−1 esti-
mated (in January 2012) by Parks et al. (2013). We conclude that the weak but per-10

sistent fumarolic activity on-top of Nea Kameni is the major emission source of CO2 at
this volcano.

For Hekla, we estimated a CO2 flux of about 15±7 t day−1 (Table 1). The large error
in our flux estimate (±46 %) is here reflecting the poor quality of our plume transport
speed measurement, which determination was complicated by the strong winds blow-15

ing on top of Hekla by the time of our measurements. We still observe, however, that
our 15±7 t day−1 estimate matches closely the recently reported CO2 flux for Hekla
summit (13.7±3.7 t day−1), obtained using conventional (accumulation chamber) soil
survey techniques (Ilyinskaya et al., 2014).

For the Hveradalur fumarolic field of Krýsuvík, we estimate a CO2 flux of20

5.7±0.9 t day−1 (Table 1). This is the first CO2 output estimate for this area, at least to
our knowledge.

Finally, on March 2014 we evaluate the CO2 flux at La Fossa crater at
524±108 t day−1 which is in the same range of those obtained in previous studies
by Aiuppa et al. (2005) (420±250 t d−1), Tamburello et al. (2011) (488 t d−1, average of25

two campaigns in 2009) and Inguaggiato et al. (2012) (453 t d−1) (see Fig. 6) and using
different techniques.
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4.5 Implications for the global volcanic CO2 flux

Our CO2 observations were taken at four volcanoes displaying a range of fumarolic
activity, from weak (Hekla) to moderately strong (La Fossa of Vulcano). As such, our
results add novel information on the CO2 degassing regime of quiescent volcanoes in
Solfatara stage of activity, and on their potential contribution to the global volcanic CO25

budget.
The current state-of-the-art of volcanic CO2 flux research has recently been sum-

marised in Burton et al. (2013). The authors presented a compilation of 33 subaerial
volcanoes for which CO2 flux observations were available at that time. These “mea-
sured” emissions totalled a cumulative CO2 output of 59.7 Mt yr−1. The same authors10

used linear extrapolation, from the measured 33 to the 150 plume-creating, passively
degassing volcanoes on the GVP catalogue (Siebert and Simkin 2002), to obtain an
extrapolated global volcanic CO2 flux of ∼271 Mt yr−1.

The linear extrapolation approach of Burton et al. (2013) is based on the implicit as-
sumption that the measured 33 volcanoes represent a statistically significant sub-set of15

the volcanic CO2 flux population. However, we argue that past volcanic CO2 observa-
tions have been prioritized at strongly degassing volcanoes under unrests; therefore,
the 33 volcanoes population may be biased towards the category of top gas emitter,
implying the linear extrapolation technique may be incorrect. The low CO2 output as-
sociated to “quiet” volcanoes, as reported in our present work, corroborates this con-20

clusion.
The alternative extrapolation approach used to quantify CO2 emissions from “un-

measured” volcanoes is to assume that the distribution of volcanic CO2 fluxes obeys
a power law (Brantley and Koepenick, 1995), as other geophysical parameters do (Mar-
ret and Allmendinger, 1991; Turcotte, 1992). If volcanic emissions follow a power-law25

distribution, then the number of volcanoes (N) with an emission rate ≥ f are given by:

N = af −c (1)
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where a and c are constants that can be derived from linear regression on measured
CO2 emission datasets. In the power-law assumption, the global volcanic CO2 flux (ftot)
was extrapolated to 88–132 Mt yr−1 (Brantley and Koepenick, 1995) using the relation:

ftot = f1 + f2 + f3 + fN

[
c

1−c
(N +1)

(
N

N +1

) 1
c
]

(2)

where fN refers to the Nth-largest measured flux. This 88–132 Mt yr−1 estimate is a fac-5

tor 2–3 lower than obtained with the linear extrapolation technique (Burton et al., 2013).
On the same basis, the volcanic+metamorphic CO2 flux was evaluated at ∼264 Mt yr−1

(Brantley and Koepenick, 1995).
The power-law distribution assumption has extensively been used to extrapolate vol-

canic gas fluxes at both global and individual-arc scale (Hilton et al., 2002). However,10

concerns have recently been raised on its validity. For example, Mori et al. (2013)
demonstrated that the SO2 flux distribution of Japanese volcanoes noticeably diverges
from a simple power law distribution. The case of the global volcanic CO2 flux popula-
tion is illustrated in Fig. 7. The figure is a log-log plot of the cumulative number of vol-
canoes (N) having measured CO2 flux of ≥ f . The diagram is based upon the dataset15

of Burton et al. (2013), implemented with new results from this study (Table 1) and
additional data for Turrialba (1140 t day−1; Conde et al., 2014) and Poas (24.7 t day−1;
Aiuppa et al., 2014) in Costa Rica, Telica (132 t day−1; Conde et al., 2014) and San
Cristobal (523 t day−1; Aiuppa et al., 2014) in Nicaragua, Lastarria (973 t day−1) and
Láscar (534 t day−1) in Chile (Tamburello et al., 2013), and Soufriere in Guadeloupe20

(14.9 t day−1; Allard et al., 2014). This implemented CO2 flux population (43 volcanoes
in total) clearly departs from a linear trend, as would be expected for a power-law dis-
tribution (see Eq. 1). The observed distribution shows, instead, a clear inflection point
at log f ∼ 2.5–2.8 (e.g., CO2 flux of ∼300–600 t day−1), which appears to divide high
(>600 t day−1) from low (<300 t day−1) CO2 flux volcanoes (L and H regression lines25

in Fig. 7).
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In view of our novel results (listed in Table 1), we propose that the non-linear behav-
ior of the volcanic CO2 flux population may (at least in part) reflect the scarcity of CO2
flux information on weakly fuming, quiescent volcanoes. The case Hekla is emblematic
in this context: the volcano has remained in a very active state in the last century (it
violently erupted only fourteen years ago; Höskuldsson et al., 2007), but shows today5

no visible plume or gas emission. Yet however, our data suggest the volcano may con-
tribute daily ∼15 t of CO2 to the atmosphere in invisible, but probably persistent form.
Similarly, no plume is seen on top of Nea Kameni in Santorini, which weak fumaroles
yet release 63±22 t of CO2 every day (in addition to a sizeable diffuse contribution
from the soil), and 5.7±0.9 t of CO2 are released daily by quiet hydrothermal activity10

at Krýsuvík (which most recent activity probably dates back the 14th century; Smithso-
nian Institute, 2013). While the individual contribution of each of the above volcanoes
is negligible globally, the cumulative contribution of all feebly degassing volcanoes on
Earth may not, and may impact the global CO2 flux distribution of Fig. 7.

To explore the latter argument further, we consider that, of the 1549 volcanic struc-15

tures listed in the GVP catalogue, around 500 are considered to have been active in
the Holocene (Smithsonian Institution, 2013), and thus still potentially degassing. For
the sake of illustration, we assume that all such 500 volcanoes have a CO2 flux equal
to or higher than 10 t day−1 (the mean of our measured Krýsuvík and Hekla fluxes).
This yields to a new point in Fig. 7, with coordinates log f = 1 (CO2 flux = 10 t day−1)20

and log N = 2.69 (500 volcanoes), which lies right above the linear regression line of
the high CO2 flux (log f > 2.5) population (see dashed line H in Fig. 7). The regression
line (line H1; R2 = 0.98) obtained considering the high CO2 flux volcanoes (log f ≥ 2.5)
plus this new log f = 1 point has slope c = −0.72. Using this value in Eq. ( 2), and with
N = 500, we calculated an extrapolated CO2 flux of 67 Mt yr−1. From these preliminary25

calculations, we conclude that (i) the power-law distribution may be an appropriate rep-
resentation of the population of CO2 flux data, provided the output of the several hun-
dreds of weakly degassing, quiescent/hydrothermal/dormant volcanoes is considered;
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(ii) a large number of volcanoes remain to be measured, possibly being characterized
by intermediate CO2 output (log f between 1 and 2.5 in Fig. 7).

5 Conclusions

We have investigated the fumarolic CO2 output from 4 quiescent volcanoes in hy-
drothermal state of activity, using an Infra Red TDL. At each of the studied volcanoes,5

the acquired TDL results have been used to contour CO2 mixing ratios in the plumes’
cross-sections, and consequently to quantifying the fumarolic CO2 output. The highest
output (524±108 t day−1) is obtained at La Fossa of Vulcano Island, the only volcano
of the 4 where a persistent atmospheric plume is observed. The lowest CO2 output
(5.7±0.9 t day−1) is associated with hydrothermal activity at Krýsuvík, with intermedi-10

ate emissions at Hekla (15±7 t day−1) and Nea Kameni (63±22 t day−1). The latter 3
volcanoes all currently display weak exhalative activity and no visible plume emission.
We therefore suggest that a 5.7–63 t day−1 CO2 output range may be characteristic
of many of the ∼500 volcanoes active in the Holocene, this in spite the majority lack
obvious surface manifestations of degassing. Assuming a representative CO2 output15

of 10 t day−1 for such 500 Holocene volcanoes, we show that the global population of
CO2 emissions may approach a simple power-law distribution.
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Table 1. CO2 fluxes (in t day−1) and standard deviation (1σ) calculated in this study. The plume
transport vertical speed (in m s−1) is also given for each site.

Volcano Date Gas speed (m s−1) CO2 Flux (t d−1)
(±1σ) (±1σ)

Nea Kameni 9 Apr 2013 1.20±0.4 63±22
Hekla 2 Jul 2013 1.00±0.5 15±7
Krýsuvík 5 Jul 2013 1.17±0.18 5.7±0.9
Vulcano 11 Mar 2014 1.00±0.20 524±108
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 700 

Figure 1. The study areas. (A) Nea Kameni summit crater (Greece) (B) Hekla summit (Iceland)
(C) Krýsuvík hydrothermal field (D) “La Fossa” crater (Vulcano Island). In each picture, the
positions of GasFinder and retro-reflectors are shown with letters and numbers, respectively.
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 701 

 702 

Figure 2. Output of the tomographic algorithm. Example for the Nea Kameni campaign,
9 April 2013. (A) Geometric reconstruction of the field experimental set-up and (B) tomographic
matrix. The script uses a data inversion procedure to assign an averaged CO2 mixing ratio (in
ppm) to each cell of the matrix. (C) CO2 mixing ratios (ppm) contour map. GasFinder and
retro-reflectors positions are shown with letters and numbers respectively. “Fum4”, “Fum5” and
“Fum6”: positions of main degassing vents; blue triangles: permanent INGV-PA stations; red
arrow: principal direction of plume dispersal. See text.
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 701 
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Figure 3. Contour map of CO2 mixing ratios (ppm), Hekla campaign of 2 July 2013. GasFinder
and retro-reflectors positions are shown with letters and numbers respectively. Blue triangle:
INGV-PA/IMO station; red arrow: principal direction of plume dispersal.
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 703 

Figure 4. CO2 Contour map of CO2 mixing ratios (ppm), Krýsuvík campaign of 5 July 2013.
GasFinder and retro-reflectors positions are shown with letters and numbers respectively.
“FumA” and “FumB”: positions of main degassing vents; blue triangle: INGV-PA/IMO station;
red arrow: principal direction of plume dispersal.
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Figure 5. Contour map of CO2 mixing ratios (ppm), “La Fossa” campaign, Vulcano Island,
11 March 2014. GasFinder and retro-reflectors positions are shown with letters and numbers
respectively. Red arrow: principal direction of plume dispersal.
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Figure 6. Time-series of CO2 flux values (tons/day) for “La Fossa crater” (Vulcano Island). Pre-
vious works: Aiuppa et al. (2005, 2006), Tamburello et al. (2011) and Inguaggiato et al. (2012).
The flux value of 524±108 t d−1, obtained in this study, is also shown.
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 706 

Figure 7. Cumulative frequency of the number of volcanoes (N) emitting CO2 flux ≥ f (in log-
arithmic scale). The diagram is based upon the dataset of Burton et al. (2013), implemented
with new results from this study and additional data (see text). Red point, with coordinates
log f = 1 (CO2 flux=10 t day−1) and logN = 2.69 (500 volcanoes), lies right above the linear
regression line of the high CO2 flux (log f > 2.5) population (dashed line H). The regression line
(line H1; R2 =0.98) is obtained considering the high CO2 flux volcanoes (log f ≥ 2.5) plus this
new log f = 1 point.
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